

Institute: University of Basrah
College of Sciences
Department of Mathematics
Email: mohna_1@yahoo.com
mohammed.ibrahim@uobasrah.edu.iq
Date: October 8, 2022

Contents

GROUP THEORY: PART I

Binary operations

DEFINITION: A binary operation \star on a non empty set G is a map

$$
\begin{aligned}
\star: G \times G & \longrightarrow G \\
\left(g, g^{\prime}\right) & \longmapsto g \star g^{\prime} .
\end{aligned}
$$

That is, $\star\left(g, g^{\prime}\right)=g \star g^{\prime} \in G$.

In this case, we say (G, \star) a mathematical system.

Example:

1. $(\mathbb{N},+)$ is a mathematical system, where

$$
\mathbb{N}=\{0,1,2,3, \ldots\}=\text { set of natural numbers. }
$$

2. $(\mathbb{Z},+)$ is a mathematical system, where

$$
\mathbb{Z}=\{0, \mp 1, \mp 2, \mp 3, \ldots\}=\text { set of integer numbers. }
$$

3. $(\mathbb{Q},+)$ is a mathematical system, where

$$
\mathbb{Q}=\left\{\frac{a}{b}: a, b \in \mathbb{Z} \text { and } b \neq 0\right\}=\text { set of rational numbers. }
$$

4. $(\mathbb{R},+)$ is a mathematical system, where \mathbb{R} is the set of real numbers.
5. $(\mathbb{C},+)$ is a mathematical system, where

$$
\mathbb{C}=\{a+b i: a, b \in \mathbb{R}\}=\text { set of complex numbers. }
$$

6. $(\mathbb{N},-)$ is not mathematical system. In fact,

$$
a=2, b=7 \text { are elements in } \mathbb{N}, \text { but } a-b=2-7=-5 \notin \mathbb{N} .
$$

Note that: $\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R} \subseteq \mathbb{C}$.
Problems: Which of the following is a mathematical system:

1. (\mathbb{Z}, \star), where $a \star b=a \cdot b$.
2. (\mathbb{Z}, \star), where $a \star b=a \div b$.
3. (\mathbb{Z}, \star), where $a \star b=a+b-2022$.
4. (\mathbb{Q}, \star), where $a \star b=a \div b$.
5. $(\mathbb{Q} \backslash\{0\}, \star)$, where $a \star b=a \div b$.
6. (\mathbb{R}, \star), where $a \star b=a^{b}$.

What is a group?

Definition: A mathematical system (G, \star) is said to be a group if

1. For all $a, b, c \in G:(a \star b) \star c=a \star(b \star c)$; [Associativity]
2. There is an element $e \in G$, called the identity element of G, such that

$$
a \star e=e \star a=a \text { for all } a \in G
$$

3. For all $a \in G$, there is an element $a^{-1} \in G$, called the inverse of a, such that

$$
a \star a^{-1}=a^{-1} \star a=e .
$$

ExAMPLE:

1. $(\mathbb{Z},+)$ is a group. Note that $e=0$ and $a^{-1}=-a$.
2. $(\mathbb{Q},+)$ is a group. Note that $e=0$ and $a^{-1}=-a$.
3. $(\mathbb{Q} \backslash\{0\}, \cdot)$ is a group. Note that $e=1$ and $a^{-1}=1 / a$.
4. (\mathbb{Z}, \cdot) is not group. Note that $a=0$ has no inverse in \mathbb{Z}.
5. $(\mathbb{Z} \backslash\{0\}, \cdot)$ is not group. Note that $a=2$ has no inverse in \mathbb{Z}.

Example: Define operation \star on \mathbb{Z} as follows:

$$
a \star b=a+b-7
$$

Prove that (\mathbb{Z}, \star) is a group.

Proof It is clear that $\mathbb{Z} \neq \emptyset$ since $-7 \in \mathbb{Z}$. Also, $a \star b=a+b-7 \in \mathbb{Z}$ for every $a, b \in \mathbb{Z}$. So, \star is a binary operation on \mathbb{Z}.

1. For all $a, b, c \in \mathbb{Z}$:

$$
\begin{aligned}
\text { L.H.S }: & =(a \star b) \star c=(a+b-7) \star c \\
& =(a+b-7)+c-7=a+b+c-14 .
\end{aligned}
$$

R.H.S: $=a \star(b \star c)=a \star(b+c-7)$

$$
=a+(b+c-7)-7=a+b+c-14=\mathbf{L . H . S}
$$

2. Assume that $e \in \mathbb{Z}$ such that $a \star e=e \star a=a$ for all $a \in \mathbb{Z}$. Then

$$
e \star a=e \vec{\longrightarrow}(+a-7=a
$$

$$
e=a-a+7=7
$$

Hence, $e=7 \in \mathbb{Z}$ is the identity of \mathbb{Z}.
3. Let $a^{-1} \in \mathbb{Z}$ is an inverse of $a \in \mathbb{Z}$. Then $a \star a^{-1}=a^{-1} \star a=e=7$ and

$$
\begin{aligned}
a^{-1} \star a=7 & \Longrightarrow a^{-1}+a-7=7 \\
& \Longrightarrow a^{-1}=14-a
\end{aligned}
$$

Hence, $a^{-1}=14-a \in \mathbb{Z}$ is the inverse of a.

The group of integers modulo n

Consider the finite set $\mathbb{Z}_{n}=\{0,1,2, \ldots, n-1\}$, where n some positive integer. Let us define a binary operation on \mathbb{Z}_{n} as follows:

$$
a+b=\text { the reminder when } a+b \text { is divided by } n
$$

For example, if $n=7$ and $5,6 \in \mathbb{Z}_{7}$, then $5+6=11=4$ since $11=7 \cdot 1+4$.

In fact, $\left(\mathbb{Z}_{n},+\right)$ forms a group. This group is called the group of integers modulo n.

What is the identity of $\left(\mathbb{Z}_{n},+\right)$?
Answer: $e=0$.

What is the inverse of $a \in \mathbb{Z}_{n}$?
Answer: $a^{-1}=n-a$.
Example: Let us give the group table for $\left(\mathbb{Z}_{4},+\right)$:

+	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

Note that: $0^{-1}=0,1^{-1}=4-1=3,2^{-1}=4-2=2,3^{-1}=4-3=1$.

The symmetric group on n letters

Let $X=\{1,2, \ldots, n\}$. The set of all bijection maps $\sigma: X \rightarrow X$, denoted by S_{n}, is called the symmetric group on X. An element $\sigma \in S_{n}$, called permutation, can be written as:

$$
\left(\begin{array}{cccc}
1 & 2 & \ldots & n \\
\sigma(1) & \sigma(2) & \ldots & \sigma(n)
\end{array}\right)
$$

How we composite two permutations?
Answer: Let $X=\{1,2,3,4\}$ and let

$$
\sigma=\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
4 & 1 & 2 & 3
\end{array}\right), \quad \tau=\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
3 & 2 & 1 & 4
\end{array}\right)
$$

Then

$$
\sigma \circ \tau=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
4 & 1 & 2 & 3
\end{array}\right) \circ\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
3 & 2 & 1 & 4
\end{array}\right)=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 1 & 4 & 3
\end{array}\right) .
$$

In fact, $\left(S_{n}, \circ\right)$ forms a group, called the symmetric group or permutation group on n letters.

What is the identity of $\left(S_{n}, 0\right)$?
Answer: $e=\left(\begin{array}{cccc}1 & 2 & \cdots & n \\ 1 & 2 & \cdots & n\end{array}\right) \quad$ (send everything to itself).
What is the inverse of $\sigma=\left(\begin{array}{cccc}1 & 2 & \ldots & n \\ \sigma(1) & \sigma(2) & \ldots & \sigma(n)\end{array}\right) \in S_{n} ?$
Answer: $\sigma^{-1}=\left(\begin{array}{cccc}\sigma(1) & \sigma(2) & \ldots & \sigma(n) \\ 1 & 2 & \ldots & n\end{array}\right)$.
Let us find the inverse of $\sigma=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4\end{array}\right)$ in $S_{4}:$
$\sigma^{-1}=\left(\begin{array}{llll}3 & 2 & 1 & 4 \\ 1 & 2 & 3 & 4\end{array}\right)=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4\end{array}\right) \quad$ (rearrangement).
For $i_{1}, i_{2}, \ldots, i_{k} \in\{1,2, \ldots, n\}$, a k-cycle or cycle of length k

$$
\sigma=\left(\begin{array}{cccc}
i_{1} & i_{2} & \ldots & i_{k} \\
i_{2} & i_{3} & \ldots & i_{1}
\end{array}\right)=\left(i_{1} i_{2} \ldots i_{k}\right)
$$

where $i_{1}, i_{2}, \ldots, i_{k} \in X=\{1,2, \ldots, n\}$ is a permutation $\sigma \in S_{n}$ such
that

$$
\sigma\left(i_{m}\right)= \begin{cases}i_{m+1} & \text { if } m \in\{1,2, \ldots, k-1\} \\ i_{1} & \text { if } m=k \\ i_{m} & \text { if } i_{m} \in X-\{1,2, \ldots, k-1\}\end{cases}
$$

In particular, a 2-cycle in S_{n} is called a transposition.

In fact, every nonidentity permutation $\sigma \in S_{n}, n \geq 2$ can be uniquely expressed (up to the order of the factors) as a composition of disjoint cycles, where each cycle is of length at least 2 .

Note that every k-cycle $\left(i_{1} i_{2} \ldots i_{k}\right)$ can be written as a composition of transpositions:

$$
\left(i_{1} i_{2} \ldots\left(i_{k}\right)=\left(i_{1} i_{k}\right) \circ\left(i_{1} i_{k-1}\right) \circ \ldots \circ\left(i_{1} i_{2}\right)\right.
$$

Hence, every permutation $\sigma \in S_{n}, n \geq 2$ can be expressed as a composition of transpositions.

ExAmple:

1. We can write the permutation $\sigma=\left(\begin{array}{ccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 7 & 4 & 5 & 1 & 6 & 2\end{array}\right)$ in S_{7} as a composition of disjoint cycles as follows:

$$
\sigma=\left(\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
3 & 7 & 4 & 5 & 1 & 6 & 2
\end{array}\right)=\left(\begin{array}{lll}
1 & 3 & 4
\end{array}\right) \circ(27) .
$$

2. Consider the permutation $\tau=\left(\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 7 & 4 & 5 & 1 & 6 & 8 & 9 & 2\end{array}\right)$ in S_{9}. Now, we can write σ as a composition of transpositions as follows:

$$
\begin{aligned}
\tau & =\left(\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
3 & 7 & 4 & 5 & 1 & 6 & 8 & 9 & 2
\end{array}\right)=(1345) \circ(2789) \\
& =(15) \circ(14) \circ(13) \circ(29) \circ(28) \circ(27)
\end{aligned}
$$

Definition: A permutation $\sigma \in S_{n}$ is said to be even(odd) permutation if it is written as the composition of even(odd) number of transpositions respectively.

Note that the permutation τ in the above example is an even permutation.

The Klein 4-group

The Klein 4 -group is a group with four elements, namely $K=$ $\{e, a, b, c\}$, which has the following group table:

\cdot	e	a	b	c
e	e	a	b	c
a	a	e	c	b
b	b	c	b^{\prime}	a
c	c	b	a	e

Note that $a \cdot a=b \cdot b=c \cdot c=e=$ identity of K
What is the inverse of each element in $(K$,$) ?$
Answer: $e^{-1}=e, a^{-1}=a, b^{-1}=b, c^{-1}=c$.
DEFINITION: The order of a group (G, \star) is the number of elements in G. If the number of elements in a group G is finite and equal to n, then G is called finite group, and we write $|G|=n$. Otherwise, G is called infinite group, and we write $|G|=\infty$.

ExAmple: I. The group $\left(\mathbb{Z}_{n},+\right)$ is finite and $\left|\mathbb{Z}_{n}\right|=n$.

Example: II. The group $\left(S_{n}, \circ\right)$ is finite. Note that

$$
\left|S_{n}\right|=n!=n(n-1)(n-2) \ldots 1
$$

Example: III. The The Klein 4-group (K, \cdot) is finite and $|K|=4$.

Example: IV. All the groups $(\mathbb{Z},+),(\mathbb{Q},+),(\mathbb{R},+),(\mathbb{C},+)$ are infinite groups.

Orders of elements in groups

DEFINITION: An element g in group (G, \star) with identity e is called of finite order n, written $o(g)=n$, if n is the smallest positive integer such that

$$
\begin{gathered}
g^{n}=g \cdot g \cdot \ldots \cdot g(n-\text { times })=e \text { "multiplicative notation" or } \\
n g=g+g+\ldots+g(n-\text { times })=e \text { "additive notation". }
\end{gathered}
$$

Otherwise, g is called of infinite order, and we write $o(g)=\infty$.

Theorem: Let a be an element in a group (G, \star) with identity e and $o(a)=n$. Then

1. $a^{m}=e, m \in \mathbb{Z}^{+} \Longrightarrow n \mid m$.
2. $t \in \mathbb{Z}^{+}$and $\operatorname{gcd}(t, n)=d \Longrightarrow o\left(a^{t}\right)=\frac{n}{d}$.

Proof

1. Using division algorithm, we get $m=n q+r$ where $0 \leq r<n$. Now,

$$
a^{r}=a^{m-n q}=a^{m} \star\left(a^{n}\right)^{q}=e \star e=e .
$$

So, $r=0$ (minimality of n). Hence, $m=n q$, in other words, $n \mid m$.
2. Since $\operatorname{gcd}(t, n)=d$, there are two integers u, v such that $n=v d ; t=$ $u d$ and $\operatorname{gcd}(u, v)=1$.

Suppose that $o\left(a^{t}\right)=k$. Want to prove that $k=\frac{n}{d}$.
Note that, $a^{k t}=e$ implies $n \mid k t$ (by assertion 1). So, $k t=n r$ for some integer r.

$$
k t=n r \Longrightarrow k d u=v d r \Longrightarrow k u=v r .
$$

In this case, $v \mid k u$ and $\operatorname{gcd}(u, v)=1 \Longrightarrow v\left|k \Longrightarrow \frac{n}{d}\right| k$. On the other hand,

$$
\left(a^{t}\right)^{\frac{n}{d}}=a^{\frac{n t}{d}}=a^{\frac{n d u}{d}}=a^{n u}=\left(a^{n}\right)^{u}=e
$$

Thus, $o\left(a^{t}\right)=k \left\lvert\, \frac{n}{d}\right.$ (by assertion 1). Finally, since $k, \frac{n}{d}$ are positive integers, we get $o\left(a^{t}\right)=\frac{n}{d}$.

Example: I. In group $\left(\mathbb{Z}_{6},+\right)$, the order of elements are shown in the following table:

element	order		
0	$\mathbf{1}$	since	$\mathbf{1}(0)=0$
1	$\mathbf{6}$	since	$\mathbf{6}(1)=6=0$
2	$\mathbf{3}$	since	$\mathbf{3}(2)=6=0$
3	$\mathbf{2}$	since	$\mathbf{2}(3)=6=0$
4	$\mathbf{3}$	since	$\mathbf{3}(4)=12=0$
5	$\mathbf{6}$	since	$\mathbf{6}(5)=30=0$.

Example: II. What is the order of $\sigma=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4\end{array}\right)$ in $\left(\mathrm{S}_{4}, \circ\right)$?
Answer:

$$
\sigma \circ \sigma=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
3 & 2 & 1 & 4
\end{array}\right) \circ\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
3 & 2 & 1 & 4
\end{array}\right)=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 2 & 3 & 4
\end{array}\right)=e .
$$

So, $o(\sigma)=2$.

Example: III. In the Klein 4 -group (K, \cdot), the order of elements are shown in the following table:

element	order		
e	$\mathbf{1}$	since	$e^{1}=e$
a	$\mathbf{2}$	since	$a^{2}=a \cdot a=e$
b	$\mathbf{2}$	since	$b^{2}=b \cdot b=e$
c	$\mathbf{2}$	since	$c^{2}=c \cdot c=e$.

Example: IV. In the groups $(\mathbb{Z},+), o(0)=1$ and the other integers have infinite orders.

Abelian groups

Definition: A group (G, \star) is said to be abelian if $a \star b=b \star a$ for all $a, b \in G$.

Example: I.

1. All the groups $(\mathbb{Z},+),(\mathbb{Q},+),(\mathbb{R},+)$ and $(\mathbb{C},+)$ are abelian groups.
2. $(\mathbb{Q} \backslash\{0\}, \cdot),(\mathbb{R} \backslash\{0\}, \cdot)$ and $(\mathbb{C} \backslash\{0\}, \cdot)$ are abelian groups.

ExAMPLE: II.

1. The Klein 4 -group K is an abelian group. From the table of the Klein 4-group, we have

$$
a b=b a, a c=c a, b c=c b, e a=a e, e b=b e \text { and } e c=c e .
$$

2. The symmetric group $\left(S_{3}, \circ\right)$ is not abelian group. Note that (12) and (23) are two permutations in S_{3} and

$$
\left(\begin{array}{ll}
1 & 2
\end{array}\right) \circ\left(\begin{array}{ll}
2 & 3
\end{array}\right)=\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right) \text { while }\left(\begin{array}{ll}
2 & 3
\end{array}\right) \circ\left(\begin{array}{ll}
1 & 2
\end{array}\right)=\left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right)
$$

So, $(12) \circ(23) \neq(23) \circ(12)$.

External direct product of groups

Let $\left(G_{j} ; \star_{j}\right)$ be groups with identity $e_{j} ; j=1, \ldots, k$. Let $G=\prod_{j=1}^{k} G_{j}$. Then $(G ; \star)$ is a group with identity $e=\left(e_{1}, e_{2}, \ldots, e_{k}\right)$ under the operation

$$
\left(a_{1}, a_{2}, \ldots, a_{k}\right) \star\left(b_{1}, b_{2}, \ldots, b_{k}\right)=\left(a_{1} \star_{1} b_{1}, a_{2} \star_{2} b_{2}, ., a_{k} \star_{k} b_{k}\right)
$$

This group is called the external direct product of the groups G_{j}; $j=1, \ldots, k$.

Note that $G=\prod_{j=1}^{k} G_{j}$ is an abelian group if all the groups $G_{j} ; j=$ $1, \ldots, k$ are abelian groups. Moreover, the inverse of $\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ in G is

$$
\left(a_{1}, a_{2}, \ldots, a_{k}\right)^{-1}=\left(a_{1}^{-1}, a_{2}^{-1}, \ldots, a_{k}^{-1}\right)
$$

where a_{j}^{-1} is the inverse of a_{j} in G_{j}.

Example: Let us find the group table of the group $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ under componentwise addition.

+	$(0,0)$	$(0,1)$	$(1,0)$	$(1,1)$
$(0,0)$	$(0,0)$	$(0,1)$	$(1,0)$	$(1,1)$
$(0,1)$	$(0,1)$	$(0,0)$	$(1,1)$	$(1,0)$
$(1,0)$	$(1,0)$	$(1,1)$	$(0,0)$	$(0,1)$
$(1,1)$	$(1,1)$	$(1,0)$	$(0,1)$	$(0,0)$

Here, $(0,0)$ acts as the identity of $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$. Moreover, every non identity element has order 2:
$o(0,1)=2$ since $(0,1)+(0,1)=(0,2)=(0,0)$ modulo 2 . Similarly, $o(1,0)=o(1,1)=2$.

Problems: I.

1. Prove that the identity in a group (G, \star) is unique.
2. Prove that the inverse of an element in a group (G, \star) is unique.
3. In a group (G, \star) with identity e, prove that
(a). Both $a \star b=a \star c$ and $b \star a=c \star a$ implies $b=c$ [These are called the cancellation laws in group].
(b). $\left(a^{-1}\right)^{-1}=a$.
(c). $(a \star b)^{-1}=b^{-1} \star a^{-1}$.
(d). $\left(a_{1} \star a_{2} \star \ldots \star a_{n}\right)^{-1}=a_{n}^{-1} \star a_{n-1}^{-1} \star \ldots \star a_{1}^{-1}$ for every $a_{1}, a_{2}, \ldots, a_{n}$ in G.

Problems: II.

1. In a group (G, \star) with identity e, define $a^{0}=e$ and

$$
\begin{aligned}
a^{n} & =a \star a \star \ldots \star a(n-\text { times }) \\
a^{-n} & =a^{-1} \star a^{-1} \star \ldots \star a^{-1}(n-\text { times })
\end{aligned}
$$

for any positive integer n. Prove that
(a). $a^{n} \star a^{m}=a^{n+m}$,
(b). $\left(a^{n}\right)^{m}=a^{n m}$
for any integers n, m.
2. In abelian group (G, \star), prove that $(a \star b)^{n}=a^{n} \star b^{n}$ for any integer n. In particular, $(a \star b)^{-1}=a^{-1} \star b^{-1} \Leftrightarrow G$ is an abelian group.
3. In a group (G, \star), prove that there is unique solution $x(y)$ for the equations $a \star x=b(y \star a=b)$ respectively.
4. Find all even permutations in $\left(S_{3}, \circ\right)$.
5. Find inverse and order of each element in $\left(\mathbb{Z}_{12},+\right)$.
6. What is the order of $\sigma=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 3 & 1 & 4 & 2\end{array}\right)$ in $\left(\mathrm{S}_{4}, \circ\right)$? What is the inverse of σ ?.
7. Write $\tau=\left(\begin{array}{ccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 1 & 4 & 5 & 3 & 7 & 6\end{array}\right)$ in $\left(S_{7}, \circ\right)$ as a composition of transpositions. What is the inverse of τ ?.

Subgroups

Definition: An non empty subset H of group (G, \star) is said to be subgroup of G, written $H \leq G$ if

1. $e \in H$,
2. $x \star y^{-1} \in H$ for all $x, y \in H$.

If $H \leq G$ and $H \neq G$, we say H proper subgroup of G, and we write $H<G$.

Theorem: Given a group (G, \star) with identity e. The intersection of any family of subgroups of G is again subgroup of G.

Proof Assume that $H_{\lambda} \leq G$ for all $\lambda \in \Lambda$. Let $H=\bigcap_{\lambda \in \Lambda} H_{\lambda}$. Want to prove that $H \leq G$.

1. Since, $e \in H_{\lambda}$ for all $\lambda \in \Lambda \Longleftrightarrow e \in \bigcap_{\lambda \in \Lambda} H_{\lambda}=H \Longrightarrow e \in H$.
2. Let $x, y \in H=\cap H_{\lambda}$. Then $x, y \in H_{\lambda}$ for every $\lambda \in \Lambda \Longrightarrow$ $x \star y^{-1} \in H_{\lambda}$ for every $\lambda \in \Lambda$ since $H_{\lambda} \leq G \Longrightarrow$ $x \star y^{-1} \in \bigcap_{\lambda \in \Lambda} H_{\lambda}=H \Longrightarrow x \star y^{-1} \in H^{\circ}$
Hence, by definition $H \leq G$.
Question: Are the union of two subgroups of a group again subgroup?

Example: I.

1. Given a group (G, \star) with identity e. The sets $\{e\}$ and G itself form subgroups of G [Trivial subgroups].
2. $\{0\}<\mathbb{Z}<\mathbb{Q}<\mathbb{R}<\mathbb{C}$ under usual addition.
3. $\{1\}<\mathbb{Q} \backslash\{0\}<\mathbb{R} \backslash\{0\}<\mathbb{C} \backslash\{0\}$ under usual multiplication.
4. The subsets $\{e, a\},\{e, b\}$ and $\{e, c\}$ form proper subgroup of Klein 4 -group K.
5. $\mathbb{Z}_{o}=$ set of odd integers is not subgroup of $(\mathbb{Z},+)$. Note that $3-1=$ $2 \notin \mathbb{Z}_{o}$.

Example: II. Let H be a subgroup of a group (G, \star) with identity e and let $a \in G$. Show that the subset

$$
a \star H \star a^{-1}=\left\{a \star h \star a^{-1}: h \in H\right\}
$$

is again subgroup of G.
roof Since $H \leq G$, we have $e \in H$.

1. $e \in a \star H \star a^{-1}$ since $e=a \star a^{-1}=a \star e \star a^{-1}$ " $e \in H$ ".
2. Let $x, y \in a \star H \star a^{-1}$. Then $x=a \star h \star a^{-1}$ and $y=a \star h^{\prime} \star a^{-1}$ for some $h, h^{\prime} \in H$.

$$
\begin{aligned}
x \star y^{-1} & =\left(a \star h \star a^{-1}\right) \star\left(a \star h^{\prime} \star a^{-1}\right)^{-1} \\
& =\left(a \star h \star a^{-1}\right) \star\left(\left(a^{-1}\right)^{-1} \star h^{\prime-1} \star a^{-1}\right) \\
& =\left(a \star h \star a^{-1}\right) \star\left(a \star h^{\prime-1} \star a^{-1}\right) \\
& =a \star\left(h \star a^{-1} \star a \star h^{\prime-1}\right) \star a^{-1}=a \star\left(h \star e \star h^{\prime-1}\right) \star a^{-1} \\
& =a \star\left(h \star h^{\prime-1}\right) \star a^{-1}=a \star h^{\prime \prime} \star a^{-1} \in a \star H \star a^{-1}
\end{aligned}
$$

where $h^{\prime \prime}=h \star h^{\prime-1} \in H$.

DEFINITION: Let S be any subset of a group (G, \star). The subgroup generated by S, denoted by $\langle S\rangle$ is the intersection of all subgroup of G containing S. In fact, $\langle S\rangle$ is the smallest subgroup of G that containing S. If $S=\{a\}$, we write $\langle S\rangle=\langle a\rangle$ which is called the cyclic subgroup generated by a. In particular, if there is an element $a \in G$ such that $G=\langle a\rangle$, we say G cyclic group. More precisely:

$$
\langle a\rangle=\left\{a^{n}: n \in \mathbb{Z}\right\} \quad \text { (multiplicative notation) }
$$

or

$$
\langle a\rangle=\{n a: n \in \mathbb{Z}\} \quad \text { (additive notation). }
$$

Example: I. Let us consider the dihedral group of degree n, denoted by D_{n}, where

$$
D_{n}=\left\{e, a, a^{2}, \ldots, a^{n-1}, b, a b, a^{2} b, \ldots, a^{n-1} b\right\}
$$

and $a^{n}=b^{2}=e ; a b a=b$. This group has order $2 n$. The subgroup of D_{n} generated by a is

$$
\langle a\rangle=\left\{e, a, a^{2}, \ldots, a^{n-1}\right\}
$$

The subgroup of D_{n} generated by b is

$$
\langle b\rangle=\{e, b\} .
$$

Example: II. Let us find all cyclic subgroups of the group $\left(\mathbb{Z}_{6},+\right)$. Using the additive notation, we get all cyclic subgroups of $\left(\mathbb{Z}_{6},+\right)$:

$$
\begin{aligned}
& \langle 0\rangle=\{0\} \\
& \langle 1\rangle=\{1,2,3,4,5,6=0\}=\mathbb{Z}_{6} \\
& \langle 2\rangle=\{2,4,6=0\} \\
& \langle 3\rangle=\{3,6=0\} \\
& \langle 4\rangle=\{4,8=2,6=0\}=\langle 2\rangle \\
& \langle 5\rangle=\{5,10=4,9=3,8=2,7=1,6=0\}=\mathbb{Z}_{6}
\end{aligned}
$$

So, we have only 4 distinct cyclic subgroups of $\left(\mathbb{Z}_{6},+\right)$, namely $\langle 0\rangle,\langle 1\rangle$, $\langle 2\rangle$ and $\langle 3\rangle$.

Example: III.

1. The group $(\mathbb{Z},+)$ is cyclic group with two generators. In fact, $\mathbb{Z}=\langle 1\rangle=\langle-1\rangle$.
2. The group $(\mathbb{R},+)$ is not cyclic group. In fact, there is no real number α such that $\mathbb{R}=\langle\alpha\rangle$.
3. The cyclic subgroups of the Klein 4-group K are:

$$
\langle e\rangle,\langle a\rangle,\langle b\rangle,\langle c\rangle .
$$

However, K is not cyclic.

EXERCISES

1. If (G, \star) a group such that $a^{2}=e$ for all $a \in G$. Prove that G is abelian.
2. Define an operation \star on $G=\mathbb{R} \times \mathbb{R} \backslash\{0\}$ as follows:

$$
(a, b) \star(c, d)=(a+b c, b d) \text { for all }(a, b),(c, d) \in G .
$$

Show that (G, \star) is a group. Is G abelian?
3. Define an operation \star on $G=\mathbb{R} \backslash\{0\} \times \mathbb{R}$ as follows:

$$
(a, b) \star(c, d)=(a c, b c+d) \text { for all }(a, b),(c, d) \in G .
$$

Show that (G, \star) is a group which has infinitely many element of order 2.
4. Let (G, \star) be a group and $a, b \in G$. Show that
(a). $o(a)=o\left(a^{-1}\right)$,
(b). $o(a)=o\left(b^{-1} \star a \star b\right)$,
(c). $o(a \star b)=o(b \star a)$.
5. Show that the set of all even permutations forms a subgroup of the symmetric group (S_{n}, \circ). This group is denoted by A_{n} which is called the alternating group on n letters. What is the order of A_{n} ?
6. Consider the subset $H=\left\{2^{n}: n \in \mathbb{Z}\right\}$ of the group $(\mathbb{Q} \backslash\{0\}, \cdot)$. Prove that $H \leq \mathbb{Q} \backslash\{0\}$.
7. Let (G, \star) be a group and let $a \in G$. Define
$C(a)=\{b \in G: a b=b a\}$
[This is called the centralizer of a] $Z(G)=\{b \in G: a b=b a$ for all $a \in G\}$
[This is called the center of G]. Prove that
(a). $C(a) \leq G$,
(b). $Z(G) \leq G$,
(c). $Z(G)=\bigcap_{a \in G} C(a)$,
(d). G abelian $\Longleftrightarrow Z(G)=G$.
8. Let (G, \star) be a group, and let H, K be subgroups of G. Define

$$
H \star K=\{h \star k: h \in H, k \in K\} .
$$

Show that $H \star K \leq G \Longleftrightarrow H \star K=K \star H$.
9 . Show that $\left(\mathbb{Z}_{12},+\right)$ is a cyclic group. Find the number of its genera-
tors.
10. Prove that any cyclic group is abelian.
11. Prove that any subgroup of a cyclic group is cyclic.
12. Let (G, \star) be cyclic group of finite order n. Prove that for any $d \mid n$ there is a subgroup of G of order d.
13. Let (G, \star) be cyclic group of finite order n and let $a \in G$. Prove that a^{k} is a generator of G if and only if $\operatorname{gcd}(k, n)=1$.
14. Find all subgroups of D_{4}. Is D_{4} abelian group? How many element of order 2 in D_{4} ?
15. Find all subgroups of $(\mathbb{Z},+)$.
16. True or False:
(a). Every element in a cyclic group (G, \star) is a generator of G.
(b). A group (G, \star) is abelian if and only if (G, \star) is a cyclic group.
(c). Any subgroup of an abelian group is abelian.
(d). Every group (G, \star) of order ≤ 4 is cyclic.
(e). Every proper subgroup of $(\mathbb{Z},+)$ has infinite order.
(f). There is a subgroup of $\left(S_{4}, \circ\right)$ of order 6.
17. Let σ be a k-cycle in $\left(S_{n}, \circ\right)$. Show that $o(\sigma)=k$.
18. Let σ, τ be disjoint cycles in $\left(S_{n}, \circ\right.$ such that $o(\sigma)=r$ and $o(\tau)=s$. Prove that $\sigma \circ \tau=\tau \circ \sigma$ and $o(\sigma \circ \tau)=\operatorname{lcm}(r, s)$.
19. Write $\sigma=\left(\begin{array}{cccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 2 & 5 & 3 & 9 & 7 & 4 & 1 & 10 & 6 & 8\end{array}\right)$ as a composition of disjoint cycles in $\left(S_{10}, \circ\right)$. What is the order of σ ? Is σ even or odd?

